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COMPUTING THE RANK OF ELLIPTIC CURVES 
OVER REAL QUADRATIC NUMBER FIELDS 

OF CLASS NUMBER 1 

J. E. CREMONA AND P. SERF 

ABSTRACT. In this paper we describe an algorithm for computing the rank of 
an elliptic curve defined over a real quadratic field of class number one. This 
algorithm extends the one originally described by Birch and Swinnerton-Dyer 
for curves over Q. Several examples are included. 

1. INTRODUCTION 

The method of 2-descent has been used for many years in the study of the 
arithmetic of elliptic curves, in both theoretical and computational investigations. 
For elliptic curves defined over the rational numbers Q, an explicit algorithm for 
carrying out a general 2-descent was presented by Birch and Swinnerton-Dyer in 
[1]. A simpler algorithm, using 2-descent via 2-isogeny, can be applied when the 
curve has non-trivial 2-torsion; this is described in [11], [6], or [10]. Both algo- 
rithms have also been described in the book [2], and have been implemented by 
the first author. (His program mwrank may be obtained via anonymous ftp from 
/ /euclid.exeter. ac.uk/pub/cremona/progs.) 

The aim of the present paper is to describe how to carry out general 2-descent 
over real quadratic number fields. For simplicity, we restrict to fields of class num- 
ber 1. We also give several examples. The algorithms have been implemented 
by the second author; see [8], where more details and examples may be found. 
(The resulting program rankrqnf 1 can be obtained free via anonymous ftp from 
//ftp.math.uni-sb.de/pub/simath/pascale-serf.) 

For the implementation of the algorithms, the computer algebra system SIMATH 
was used. This system is mainly designed for algebraic number theory, with an 
emphasis on elliptic curves and function fields over finite fields. It has been de- 
veloped since 1985 in the research group of Prof. H. G. Zimmer in Saarbriicken. 
(For non-commercial applications, SIMATH is available free via anonymous ftp from 
//ftp.math.uni-sb.de/pub/simath.) 

An independent implementation of 2-descent via 2-isogeny for number fields of 
arbitrary degree and class number is currently being developed by D. Simon in 
Bordeaux, as part of the PARI system. 
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Much of the work carried out here also applies to the case of imaginary quadratic 
fields; the main difference is that in order to obtain bounds for the search region (see 
subsections 2.1-2.3) it is necessary to do more work. This is currently in progress. 

We would like to thank Prof. H. G. Ziminer for his support, and Prof. D. Zagier 
for some helpful suggestions. 

2. 2-DESCENT OVER REAL QUADRATIC FIELDS 

If an elliptic curve E has a rational point of order 2 over a number field K, one 
can use 2-descent via 2-isogeny to determine rk(E/K). This algorithm goes back to 
Tate and is described in some detail in [11], [6], and [10]. See also [2] for a detailed 
description of the algorithm over Q. 

In order to implement 2-descent via 2-isogeny over a number field K, the follow- 
ing ingredients are needed in addition to basic arithmetic for the field and its ring 
of integers DK: 

1. For a given finite set S of prime ideals of K, determine representatives in K* 
for the finite set K(S, 2) consisting of those o E K* modulo (K*)2 such that 
ordp (o) is even for all primes P E S. 

2. Given a quartic polynomial g(X) E K[X], determine whether g(X) has any 
roots in K, and also whether the equation Y2 = g(X) is (a) soluble everywhere 
locally, i.e., in all completions Kp of K (including R if K has real embeddings); 
or (b) soluble globally, i.e., in K. 

The first task is straightforward when K has class number one, since it amounts 
to listing all square-free divisors of a fixed element of K*, modulo squares of units. 
The second is much harder and will be discussed in more detail below, as the same 
procedures are needed for the general 2-descent which we will describe. In practice 
it is not hard to determine the local solubility, but all we do to find global points 
on the quartics y2 = g(X) is to carry out an efficient search for points with small 
height. Hence there are cases where we do not find a global point even when there 
is no local obstruction; in these cases, we cannot decide whether there are in fact 
no global points (in which case the curve we are studying has non-trivial Tate- 
Shafarevitch group), or such points exist but have large height. In such cases we 
will only be able to determine lower and upper bounds for the rank. 

In our implementation, we handle separately curves which have a K-rational 2- 
torsion point, as descent via 2-isogeny is much simpler and faster than the general 
2-descent. We have computed the rank r and found r independent points of infinite 
order for a large number of curves over the fields Q( D) for 

D = 2, 3, 5, 6, 7, 11, 13, 14, 17, and 19. 

In particular, we have carried out the following investigations. We studied the 
curves defined over Q(V5) and Q(V6) considered by Graf in [5]. In several cases, 
we were able to show that the lower bounds for the ranks given in [5] are in fact 
too small, and we found explicit generators in all cases (which are not given in [5]). 
We also investigated the size of the 2-torsion subgroups of the Tate-Shafarevitch 
groups over Q( D) of a family of curves defined over Q studied by Kramer in [7], 
finding examples of order up to 210. See [8] for details of these investigations, which 
we have omitted here at the suggestion of the referee. 

We now turn to general 2-descent, which (in principle) can be applied to an 
arbitrary elliptic curve E over a number field K, whether or not E(K) has points 
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of order 2. We follow the method described by Birch and Swinnerton-Dyer in [1] 
for the case K = Q, with a few modifications. These are analogues in the real 
quadratic case of improvements made by the first author to the algorithm over Q, 
implemented in his mwrank program; see [2] and [3]. 

The main principle of general 2-descent is to consider 2-coverings (or principal 
homogeneous spaces) of the elliptic curve E. These are represented (provided that 
they are everywhere locally soluble, see the remark below) by quartic equations of 
the form 

Y2 = g(X) = aX4 + bX3 + CX2 + dX + e with a,b,c,d,e E K, 

whose invariants 

I(g) = 12ae - 3bd + C2 and J(g) = 72ace - 27ad2 - 27b2e + 9bcd - 2c3 

differ from the invariants c4(E) and 2c6(E) by a 4th and a 6th power, i.e., 

I(g) = A4 c4(E) and J(g) = A6 2c6(E) 

for some A E K*. Two homogeneous spaces y2 = g, (X) and y2 = 92 (X) are called 
equivalent if 

g2X) u2Qy+)g 
92 (X _=Y2(X + 6)4g, (' 

+ 

for some ae, 6, 8y, E , K with (cv8 - /y)bt E K*. Then I(g2) = (v -_3_y)4/t4I(gj) 
and J(g2) = (8- /_0y)4'a4 J(gi). By suitable scaling, each equivalence class contains 
integral quartics (with coefficients in the ring of integers DK), and we will only 
consider integral quartics from now on. 

Remark. Not all 2-coverings of E can be represented by quartics. However, this 
is certainly possible for those which have points everywhere locally (that is, in all 
completions of K) by [1, Lemma 1]. These are the only 2-coverings that will concern 
us here. 

The set of all equivalence classes of 2-coverings forms an elementary abelian 
2-group g, isomorphic to the Galois cohomology group H1 (Gal(K/K), E(K) [2]). 
The trivial class in g consists of those quartics y2 = g(X) such that g(X) has a 
root in K. 

We are interested in the following two subgroups of g the subgroup G of all 
equivalence classes of 2-coverings which have a point everywhere locally (i.e., over 
all completions Kp of K); and the subgroup G' of all equivalence classes of 2- 
coverings which have a global point. These are both finite elementary abelian 2- 
groups: G is isomorphic to the Selmer group S(2) (E/K), while G' is isomorphic to 
E(K)/2E(K). In fact, each global point on a quartic gives rise to a point in E(K), 
whose coset modulo 2E(K) only depends on the equivalence class to which the 
quartic belongs; and all cosets of 2E(K) in E(K) are covered by suitable quartics. 
Writing the orders of G and G' as 2 and 2k, respectively, by the Mordell-Weil 
Theorem the rank r of E(K) is given by 

r = k'-t, 

where 2' = #E(K)[2]. So in order to compute the rank r, all we have to do is de- 
termine the number 2k of all everywhere locally soluble quartics (up to equivalence) 
and, among these, the number 2k' of all globally soluble quartics. 
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Just as in the case of 2-descent via 2-isogeny, there is a major problem: How to 
decide whether a quartic with points everywhere locally has a global point? If we 
do not find such a point, it may be either because there is none, or because we have 
not searched long enough. 

Quartics which are everywhere locally but not globally soluble come from ele- 
ments of order 2 in the Tate-Shafarevitch group; more precisely, the exact sequence 

0 ' > E(K)/2E(K) - S(2) (E/K) T i(E/K)[2] - 0 

implies 

#JEI(E/K)[2] = #(S(2) (E/K))/#(E(K)/2E(K)) = #(G/G') = 2k-k' 

Thus k' < k M J(E/K) [2] is non-trivial. 
For a fixed pair of integral invariants (I, J), the number of equivalence classes of 

integral quartics is finite; we will show how to bound the coefficients (a, b, c) to a 
finite search region. We must also consider which pairs (I, J) are relevant for a given 
curve. We will return to the latter question in Section 3, and now confine ourselves 
to one fixed pair (I, J), explaining in detail how to find all quartics belonging to 
this pair. 

Our approach is to determine suitable bounds on a triple loop for the coefficients 
(a, b, c), after which solving for the remaining coefficients (d, e) is easy. Thus we 
must determine the following: 

(1) a search region for a, 
(2) for each a, a search region for b, 
(3) for each pair (a, b) in the search region, a search region for c, 
(4) for each triple (a, b, c) in the search region, the coefficients d and e (if any) 

such that I(a, b, c, d, e) = I and J(a, b, c, d, e) = J; 
and then check whether each quartic y2 = aX4 + bX3 + CX2 + dX + e found is 

(5) a trivial quartic, 
(6) equivalent to a quartic obtained previously, 
(7) everywhere locally soluble, 
(8) globally soluble. 

Finally we will derive 

(9) points on the elliptic curve from the global points on the quartics. 

The nine steps in this procedure are described in more detail in the following sub- 
sections 2.1-2.9. 

2.0. The different types of quartics. Over K Q, Birch and Swinnerton-Dyer 
considered separately quartics with 0, 4, and 2 real roots, calling these quartics of 
type 1, 2, and 3, respectively. Note that \ = 43 _ J2 = 27 disc(g), so that types 
1 and 2 only arise when /\ > 0, while only type 3 arises when /\ < 0. 

Moreover, when /\ > 0, one can show that the classes of globally soluble quartics 
of type 2 form a subgroup of the group G', of index 1 or 2. This is because type 2 
quartics in G' give points in E(Q) which are on the identity component of E(R), 
which has two connected components in this case: there will exist globally soluble 
quartics of type 1 if and only if there are rational points on the other component 
of E(R). One can use this fact to speed up the algorithm, since it follows that if 
there are any globally soluble quartics of type 1, the number of them is equal to 
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the number of type 2, so the search for type 1 quartics may be curtailed as soon as 
one is found. 

Similarly, over a real quadratic field K = O(VD), there are nine types of quartics 
g, depending on the number of roots of g in each of the two real embeddings ul 
and u2 of K. We say the type is (tl,t2) if uji(g) has type ti for i = 1,2. Thus, 
depending on the pair of signs sgn(/\) = (sgn c7 (/\), sgn 0J2(Z\)) (?, ?), there are 
1, 2 or 4 types to be considered separately: 

{(1, 1), (1, 2), (2, 1), (2, 2)} if sgn(\) = 

{(1, 3), (2, 3)} if sgn(/\) =(?,-); 

{(3, 1), (3, 2)} if sgn(A) =(-,+); 

{(3,3)} if sgn(\) = 

As over Q, we may use the group structure to reduce the running time of the 
algorithm, since (for example) the number of globally soluble quartics of type (3, 1) 
is either 0 or equal to the number of type (3, 2); similarly in other cases. 

2.1. A search region for a. In order to bound the leading coefficient a for 
K = Q, Birch and Swinnerton-Dyer introduced the notion of a reduced quartic. 
They associate to each quartic a positive definite quadratic form, covariant under 
real transformations, and they call a real quartic reduced if the quadratic form is 
reduced. Since every positive definite quadratic form is SL(2, Z)-equivalent to a 
reduced quadratic form, every quartic is SL(2, Z)-equivalent to a reduced quartic. 
For a reduced quadratic form, the root with positive imaginary part lies in the 
usual fundamental domain for the action of SL(2, Z) on the complex upper half 
plane 'X, which implies that its imaginary part is at least 3/2. From this lower 
bound Birch and Swinnerton-Dyer derived bounds for the leading coefficient a of 
reduced quartics. The relevant a are the integers between the lower and the upper 
bound. 

Let us now come to a real quadratic number field K - Q( D), D > 0. For each 
quartic over DK, we consider its two real embeddings. The action of SL(2, Z) on 
XH is replaced by the action of SL(2, DK) on 7H x 7X: 

M(zI,z2) = (c91(M)(Zj),c2(M)(Z2)) VM E SL(2, DK)) (ZI) Z2) EH X x X. 

The product of the two imaginary parts can be bounded below as follows. 

Theorem 1. Let K = D(X), D > 0, with h(K) = 1. For all (zI,z2) E 7X2 there 
exists M E SL(2, DK) such that 

Im(u1 (M) (Zl)) * Im(072 (M) (z2)) > 16 disc (K/Q)? 

Proof. The first part of the proof is a simplification of a similar proof in [4] for 
arbitrary totally real number fields. For some fixed z = (z1, Z2) E 712 we set 

A = DOKZ+DK ={(7i(a) zi1+ ul(b), u2(a) Z2?+ 2(b)) I a, b (EK} C C2 

and for arbitrary L E R>, we define 

VL = {u=(ul,u2)C C2; juj 2<L L m(zj)forj=1,2}. 

A well-known lemma by Minkowski says that if the volume of VL is greater than 
or equal to 24 times the volume of a fundamental parallelogram for A, which is the 
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case for L > 22 /disc(K/(Q), then there exists a non-zero element of A lying in VL, 
i.e., there are c, d E OK, not both zero, satisfying 

uj(c) .z? + oj (d)12 < L .Im(zj) for j = 1, 2. 

Let e = gcd(c,d), hence 1 = gcd(c',d') for c' c and d' = so that there exist 
a', b' E OK with 1 = a'd' - b'c'. Then we have, for the matrix M 4(a' b 

Im (cj (MW) (zj)) > L -1 .I gj (e) 12. 

If we now try to bound the imaginary parts simultaneously, which is done in [4], 
some power of ul (60) comes in, where Eo is the fundamental unit of K. But this 
can be avoided by bounding the product of the imaginary parts: 

Im(TI (M)(zl)) . Im(T2(M) (Z2)) > L-2 normK/Q(e)12 > L-2. 

For L = Vdisc(K/(Q) we obtain the desired result. DG 

Applying this result leads to bounds on the norm of a, so that we only have to de- 
termine all a E OK whose norm lies between these bounds. For each unit 6 of K, the 
integral quartic with coefficients (a, b, c, d, e) is equivalent to (62a, Eb, C, 6-1d, 6-2e), 
which is also integral and has the same invariants. Since the number of elements 
a E OK with bounded norm is finite modulo multiplication by squares of units, 
we obtain a finite set of candidate first coefficients a. We omit the details of the 
bounds, in which the various types must be treated separately; see [8] for details. 

2.2. For each a, a search region for b. For all ,3 E DK, the quartic g*(X) = 
g(X +,3) has integral coefficients and the same invariants as g. Its first two coeffi- 
cients are a* = a and b* = b+ 4,3a. Hence we may assume b lies in a fixed complete 
set of representatives modulo 4a. We choose this set to be (almost) symmetric 
about 0, which makes it possible to consider b and -b simultaneously. 

2.3. For each pair (a, b), a search region for c. When determining bounds on 
a in Subsection 2.1, we may also obtain lower and upper bounds on 7i (c) and u2 (c) 
with very little extra work. These bounds are similar to the corresponding bounds 
over Q (see [2]), except that they also involve both the discriminant disc(K/Q) and 
the fundamental unit (see [8] for details). 

2.4. For -each triple (a, b, c), the coefficients d and e. Given a triple (a, b, c), 
we define H = 8ac - 3b2. If there is a quartic with invariants (I, J) and coefficients 
(a, b, c, d, e) for some d, e, then the following syzygy is satisfied, where R = b3 + 
8a2d - 4abc: 

H3- 48a2HI + 64a3J =-27R2. 

We now compute S(a, b, c) = H3 - 48a2HI + 64a3J, and test if it is of the form 
-27R2 with R in OK. If not, we discard the triple (a, b, c); if so, we set d 
(R - b3 + 4abc)/(8a2) and e (I + 3bd - c2)/(12a). (Note that a :4 0 for a 
nontrivial quartic.) Provided that d and e are integral, we have found a suitable 
quartic. 

We can save much time in practice by using a quadratic sieve: we only wish to 
consider a triple (a, b, c) which lies in our search region if S(a, b, c) is -27 times a 
square in DK* We can use a number of auxiliary sieving moduli P, and restrict 
the search to triples (a, b, c) for which -3S(a, b, c) is a square modulo P. This can 
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be done efficiently by initializing a suitable array of binary flags: a 2-dimensional 
array suffices, as (for fixed I and J) S(a, b, c) is a function only of a and H. 

To give an idea of the time saved by using this quadratic sieve based on the 
syzygy, in the program mwrank (over Q) sieving modulo the five rational primes 
5, 7,11,13,17 saves up to 90% of cpu time; for a real quadratic number field, sieving 
modulo the smallest 11 degree one primes still saves between 30% and 70%. 

2.5. Checking triviality. Testing whether a quartic y2 = g(X) is trivial, i.e., 
whether g(X) has a root in K, is straightforward, assuming that one is using a 
computer algebra system containing a routine for factorizing polynomials over K. 

2.6. Testing equivalence. A simple method of testing equivalence of quartics 
over an arbitrary field K was derived in [3], based on inivariant theory. We present 
this test here; see [3] for details and proofs. Even over Q, this test is much simpler 
to implement than the equivalence test presented in [1]. 

It suffices to test equivalence of quartics with the same invariants I, J, since 
if 92(X) has invariants A41, A6J we may initially replace gi (X) by A2gi (X) (or 
91 (AX)). 

Proposition 2. Let gj (X) forj = 1, 2 be quartics over DOK with coefficients aj, bj, 
cj, dj, e3, both having the same irnvariants I, J. For j = 1, 2, set Hj = 8a3cj-3b 3 
and R= bV + 8a di - 4a bjcj. Define 

2 
T --(H1H2 + 32aia21); R = RIR2; 

3 

S (64I(H2a2 + H1H2ala2 + H2a2) + 256Jaia2(Hia2 + H2al) - H2H). 
27 22 

Then gi and 92 are equivalent if and only if the quartic X4 + TX2 - 8Rx + S has 
a root in K. 

Remark. The quartic X4 + TX2 - 8Rx + S does not (in general) have invariants 
I, J, though its cubic resolvent field is the same as that of gi and 92. 

2.7. Local solubility. Testing local solubility of y2 = g(X) at the infinite primes 
of a real quadratic number field K (or, more generally, an arbitrary number field 
with real embeddings) is easy. One simply has to find out whether the corresponding 
embedding has a solution over R, i.e., whether g(X) can take non-negative values. 

Now let K be an arbitrary number field, P a finite prime of K, and g(X) a 
polynomial over Zp, the ring of P-adic integers in the completion K2. Local solu- 
bility of y2 = g(X) is guaranteed for all odd primes not dividing the discriminant 
41(g)3 _ J(g)2, since the curve is then nonsingular modulo P. Thus we can restrict 
to testing local solubility modulo finitely many "bad primes". Also, it is clear that 
y2 = g(X) has a solution over Kp if and only if y2 = g(X) has a solution over 
Z, or y2 g*(X) has a solution over Zp with X 0_ (mod)P, where g*(X) 
X4g(1/X) eX4 + dX3 + CX2 + bX + a for g(X) aX4 + bX3 + CX2 + dX + e. 

Following [1], we use a modified form of Hensel's Lemma to determine whether 
for each residue class xo mod 'P there is a solution of y2 = g(X) with X xo 
(mod P-). (See [9] for an explicit statement over an arbitrary number field.) The 
lemma gives three possible answers: either "definitely yes" or "definitely no" or 
"maybe". If the lemma certainly gives a solution, we have no more to do. If 
it certainly gives none, we reject this class. If the lemma gives us no definite 
information (in the "maybe" case), we recursively consider the corresponding classes 
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modulo 'P'1. This procedure is guaranteed to come to an end, as the "maybe" 
case cannot occur for sufficiently large v. 

If y2 = g(X) is insoluble over Zp, we go on to consider y2 = g*(X), starting 
now with the one class 0 mod P. If this too does not give a solution over Zp, the 
equation y2 = g(X) is insoluble over Kp. 

This procedure works adequately provided that none of the "bad primes" under 
consideration has large norm. For large primes, one should instead use the method 
of Siksek (see [9]), but we have not yet implemented this for real quadratic fields, 
as in all our examples the bad primes were small. 

2.8. Global solubility. To test for global solubility of y2 = g(X), we simply 
search for a point over K. This is realized by loops on the numerator and the de- 
nominator of X and testing whether g(X) is a square. Here one can save much time 
by sieving, i.e., by checking first whether g(X) is a square modulo some appropri- 
ate moduli. The number of moduli should not be too large, because we then need 
more time for initializing arrays for local squares/non-squares than we save; and 
too few moduli do not reject enough global non-squares. It is often preferable to 
use composite moduli (e.g., containing small powers of 2 and 3) instead of primes. 
We found that 72 = 23 32, 77 = 7- 11, 65 = 5 *13 was the best choice in our case. 

2.9. Points on the elliptic curve from the global points on the quartics. 
Let 

g4(X, Y) = (3b 2- 8ac)X4 + 4(bc - 6ad)X3Y + 2(2c2 - 24ae - 3bd)X2Y2 

+ 4(cd - 6be)XY3 + (3d 2- 8ce)Y4 

and 

96(X, Y) = (b3 + 8a2d - 4abc)X6 + 2(16a2e + 2abd - 4ac2 + b2c)X5Y 

+ 5(8abe + b2d - 4acd)X4Y2 + 20(b2e - ad2)X3Y3 

- 5(8ade + bd2 - 4bce)X2Y4- 2(16ae2 + 2bde -4c2e + cd2)XY5 

- (d3 + 8be2 - 4cde)YG 

be the classical quartic and sextic covariants of the quartic g(X) = aX4 + bX3 + 
CX2 + dX + e. Note that the leading coefficients of 94 (X) and 96 (X) are -H and R, 
respectively. The syzygy aleady used in Subsection 2.7 extends to a syzygy between 
the covariants 

94 (X)3- 48Ig(X)2g4(X) - 64Jg(X)3 = 2796 (X)2. 

It follows easily that for each K-rational point (x0, Yo) on the quartic y2 = g(X), 
the point 

(x,Y) =( 394(xo) 27' (XQ) 

lies on the elliptic curve y2 = X3 -271X - 27J, which is isomorphic to the original 
curve E. 

The theoretical basis for the general 2-descent method is the fact that the points 
we thus obtain on E(K) are in the same coset of 2E(K) in E(K) if and only if they 
come from equivalent quartics; see [3] for details. 
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3. THE RELEVANT (I, J) PAIRS 

We have described in Section 2 how to determine all reduced quartics for one 
fixed pair (I, J). We will now explain how to find all relevant (I, J) pairs. 

We start with the case K Q We may assume that the elliptic curve E over 
Q is given in the form 

E y2 = X3-27IX-27J with I, J E Z. 

As noted above, I and J differ from c4(E) = 2434I and 2c6(E) = 2G3GJ by a 
4th and a 6th power, respectively. The question is whether we can divide out fur- 
ther 4th and 6th prime powers from I and J. This can be done (for a prime 
p satisfying p4 1 I and pG I J) if every quartic over Z with invariants I and 
J which is p-adically soluble is equivalent to a quartic over Z with invariants 
p-41 and p-6J. In this case we say that I and J can be p-reduced. In ad- 
dition, we might conceivably have to inultiply I and J by 4th and 6th prime 
powers. This must be done if we cannot prove that p41 and p6J can be p- 
reduced. In [1], the following criteria for p-reducibility are stated in three lemmas: 

Lemma 3: p y 2, 3: p4 I, pG J i I, J can be p-reduced. 
Lemma 4: p = 3: 35 J, 39 J or 

34 1 ,3 6 J, 315 1 413 - J2 I J can be 3-reduced. 
Lemma 5: p = 2: 26 I, 29 J, 210 1 81 + J I, J can be 2-reduced. 

Note that for p = 2, we only have sufficient conditions for reducibility, while for all 
odd primes we have necessary and sufficient conditions. 

This shows that for primes p y 2, 3, we can always make I and J free of 4th and 
6th powers. For p = 3 and p = 2, the situation is more complicated: in both cases 
p4 1 I and p6 I J may occur, but we can always avoid p8 I and p12 I J. To find 
the relevant (I, J) pairs over Q we therefore proceed as follows. 

* For all primes p y 2,3, we may assume that p4 % I or p6 % J. 
* p = 3: We nay assume that 38 % 1 or 312 % J. If 35 1 I, 39 1 J or 34 11 I, 3G 16 J, 

315 1 4I3 _ J2 hold, we replace (I, J) by (3-4I, 3-6 J). 
* p = 2: We may assume that 28 % I or 212 % J. If 2 4 I, 2G 1 J, we replace 

(I, J) by (2-4I, 2-GJ). Then as well as the basic pair (I, J), we also consider 
the pair (I', J/) = (24I, 26j), unless 22 1 I, 2 3 J, and 21 21 + J. 

Hence we have either one or two relevant pairs of invariants over (Q. 

Remark. If c4 and cG are the invariants of a global minimal model for E over Q, 
then the invariant values I = c4, J = 2c6 are automatically p-reduced for all odd 
primes p (including p = 3). The pairs to be considered are thus (C4, 2c6) in all 
cases, and also (24C4, 27C6) unless 22 1 C4, 22 1 C6, and 2 3 C4 + C6. 

Now we come to the case K = Q(VD), D > 0. As before, we may assume that 
we have an elliptic curve of the form 

E: Y2 = X3-27IX-27J with I, J CZ DK, 

and try to divide out 4th and 6th powers from I and J. Therefore we need analogous 
versions of Lemmas 3, 4, and 5 over K. In order to generalize these, we first had 
to write down in detail the proofs of Lemma 3, 4, and 5 in [1] (over Q), since [1] 
only contains a sketch of the proof of Lemma 3; the proofs of Lemma 4 and 5 
were omitted, because they are "similar to that of Lemima 3, but far more tedious 
. . . ". We were then able to obtain versions of these lemmas valid over (quadratic) 
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number fields. In [8] we have given in detail all proofs over (quadratic) number 
fields. They did require an enormous amount of time and patience, but not a very 
high theoretical level. Here we will confine ourselves to listing the results. We 
will restrict our consideration to prime ideals which are principal, as we will only 
apply the algorithm over quadratic number fields of class number 1. Lemma 3 
holds for arbitrary number fields; Lemma 4 too, but with an additional condition 
for ramification index 2. Lemma 5 only holds for quadratic number fields, but it 
should be considered as a great success to have such a lemma for real and imaginary 
quadratic number fields of arbitrary discriminant. 

As before, we say that the pair I, J can be P-reduced for a principal prime ideal 
P = (-r) of K, if every quartic over DK with invariants I, J which is P-adically 
soluble is equivalent to a quartic over DK with invariants T-4I, TG6J. 

Lemma 3 (Generalization of Lemma 3 of [1]). Let K be an arbitrary number field 
and 'P = (7r) a principal prime ideal of K dividing the rational prime p 7 2, 3. If 

7 I, 4 76 I j) 

then I, J can be P-reduced. 

Lemma 4 (Generalization of Lemma 4 of [1]). Let K be an arbitrary number field 
and P = (7r) a principal prime ideal of K dividing the rational prime 3, with 
ramification index c. If 

7r+4 j 7I3+6 I J or 

r6 _I 7Tr9 j, Jw-21 1 4I3 _ J2 and ?= 2 or 

i4 _| , 7T || J) r3E+12 1 413 _ J2 

then I, J can be P-reduced. 

Lemma 5 (Generalization of Lemma 5 of [1]). Let K = Q( D) be a quadratic 
number field and P = (7r) a principal prime ideal of K dividing the rational prime 
2. Then we have 

(a) for (2) = 'P, i.e., D _ 5 (mod 8) and 7r = 2: 

27 I, 210 1 J = I, J can be P-reduced; 

(b) for (2) = P1P2 with P,1 7 P2, i.e., D -1 (mod 8) and P = P1 or P2: 

wr | I, w9 j| 7wr10 w 7 31 + J I, J can be P-reduced; 

(c) for (2) = p2, i.e., D _ 2,3 (mod 4): 

r8 I i, F11 J or 

r l9 11 _ w'13 1 J or 

7iF 10 I _w15 jJ 7r16 1 7T51 + J I, J can be P-reduced. 

Remark. Just as in the case K = Q, the conditions in Lemma 3 are necessary and 
sufficient for P-reducibility, and those in Lemma 5 are only sufficient. The situation 
in Lemma 4 is more complicated. In the case E = 1, the conditions are the same 
as over Q; they are necessary and sufficient. For E > 2, however, they are only 
sufficient. 

We now derive from these lemmas the relevant (I, J) pairs over a quadratic 
number field K- Q(V( D). Lemma 5 shows that they depend on the decomposition 
of the rational prime 2 in K, and we may need to consider up to four pairs. 
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* Just as over Q, we may assume I and J to be free of 4th and 6th powers of 
prime elements belonging to primes not dividing 2 and 3. 

* Let P (7r) be a prime ideal dividing 3, with ramification index ? ( 1 or 2). 
We may exclude the case wr8 1, _r12 I J. If either 

=1 and 7w5 _I, 7r9 J or 
7r4I, w76 1j j, iF15 144I3 _ -2 

or 
E 2 and 7w'6 J IF12 J or 

w7r6 I,9 J, w21 4I _3 J2 or 
7 ,4 wI 6 j, ir18 413 -2 

we replace (I, J) by (7r-41, w7-4J). 
* For prime ideals dividing 2, we must consider three cases: 

(a) D -5 (mod 8), i.e., (2) = P and 7r = 2: 
We may exclude that 28 1 I, 2 12 J. If 24 I, 2 6 J, we replace (I, J) by 
(2-4I, 2-6jJ). As well as the basic pair (I, J), we also consider the pair 
(I', J') = (24I, 26J), unless 2 3 I and 2 4 J. 

(b) D -1 (mod 8), i.e., (2) =PIP2 with PI 7 P2 and'P = (iv1), 2 P (2): 
Let 7r be 7ri or 7r2. As in case (a) we may exclude 7r8 1, I l12 J. If 
7w4 1I, _76 1 J, we replace (I, J) by (7r-4,_ 7w-6J). But we also take into 
consideration the pair (I', J') = (7r41, w76J). We have 
r6 i I, l9 I Ji) 7lFO 1 7 '3_+ J' - j - 2 1 I wr3 j, J 4 I+j. 

This means: 
If (2 I, 73 1 J, 7w4 1 7r1I + J) and (7r I, 7 3 1 J, w7r4 721 + J), then 
only (I, J) is relevant; 
if (F2 I,3 I J, 7wi4 1 7r,I + J) and (72 Ior 7w3 , J or 74 ,72I + J), then 
(I, J) and (7r4_I, 7w6 J) are relevant; 
if (7r-%2 I or 7w3 , J or 7%4 , 7rwiI + J) and (7r I,2 7w3 I J, 7 4 w17r2I + J), then 
(I, J) and (7r4_I, 7i6jJ) are relevant; 
if (72 Ior 7w3 , J or 7r4 , 7rI + J) and (72 Ior 7w3 , J or 7w4 v 72I + J), 
then (I, J), (w7r l4, 7 6 J), (4TI, 7 6 J), and (w74174I, 767r26J) = (24I, 26 J) are 
relevant. 
So in this case we have to consider one, two, or four pairs of invariants. 

(c) D -2, 3 (mod 4), i.e., (2) = P2 with 2P (7r): 
Here we can only exclude that 7r12 1, Fl8 I J. If 7r8 I, 1 l12 I J, 
we replace (I, J) by (7r-i81 r-12 J); if iv4 I, _rF I J, we replace (I, J) by 
(7r-4I, 7r-6J). But we also take into consideration the two pairs (I', J') 
(7r4I, 6 6J) = (41, ?8J) and (I", J") = (7r81, 7v12 J) = (161, 64J). Lemma 
5 gives the following three cases: 
If 7i4 1I, _v5 11 J, then only (I, J) is relevant; otherwise, 
if 7r 11 I, 7r 1 J or 7r2 1 I,_ 73 1 J,) 74 1 7rI + J, then the two pairs (I, J) and 
(I', J') are relevant; 
otherwise, all three pairs (I, J), (I', J'), and (I", J") are relevant. 
Hence there are one, two, or three relevant (I, J) pairs in this case. 

4. EXAMPLES 

When we implemented general 2-descent over real quadratic number fields of 
class number 1, we saw that the search region on the first three coefficients a, b, c of 
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the quartics often becomes very large. Using the syzygy to apply a quadratic sieve 
to the search is thus essential. We are also in the process of obtaining improved 
bounds for the coefficients of real reduced quartics, better than the ones obtained in 
[1] for quartics with negative discriminant, by using a new definition of "reduced" 
in that case. We expect that these improvements, when implemented, will improve 
the running time of the algorithm considerably. Using the old bounds, even for 
the four number fields with the smallest discriminant, namely Q(V5), Q(8) = 
Q(V2), Q(1/2) = Q(V3), and Q( 13), we had to test many curves in order to 
find examples with "reasonable" cpu times. We have listed below two examples 
over each of the four fields. All examples have trivial 2-torsion. In Q(V5) and 
Q( 13), the rational prime 2 is inert, i.e., we have either one or two relevant (I, J) 
pairs. We include one example for each case. In Q(V2) and Q(V3), the rational 
prime 2 is ramified, i.e., there are one, two, or three pairs of invariants. For both 
D we have given one example with one pair and one example with three pairs. 

We ran these examples on an SGI Challenge. 
The curves are defined as E = [a,, a2, a3,a4, a6], where the a? are the standard 

Weierstrass coefficients, and each coefficient a. is denoted by an ordered pair of 
integers which are its coefficients with respect to the standard integral basis of DK* 

Example 1: K =Q(5), E- [(2,0), (-2,0), (-1,-1), (0,1), (0,-1)]. 
One (I, J) pair: ((64,0), (-160,432)). 
Three inequivalent nontrivial globally soluble quartics: 
#1: (a, b, c, d, e) = ((1, 0), (0, 0), (2,0), (4, -4), (5,0 )) 

P1 = ((, ), (1,0 )). 

#2: (a, b, c, d, e) = ((1, 0), (0, 0), (-46,30), (-204,124), (-246, 155)) 
F--+P2= ((8, -5), (-33,21)). 

#3: (a, b, c, d, e) = ((1,0 ), (0,0 ), (-4,-6), (-4,-12), (1,-7)) 
P3= ((1, 1), (-1, -2)) P1 + P2. 

Rank = 2. 
Total cpu time: 19m, 49s. 

Example 2: K = Q(5), E [(-2,0), (-2,-1), (2, -2), (-2,1), (0,0)]. 
Two (I, J) pairs: ((14, -6), (-35,25)) and ((224, -96), (-2240,1600)). 
Seven inequivalent nontrivial globally soluble quartics: 
(I, J) = ((14, -6), (-35, 25)) (cpu time 19s): 
#1: (a, b, c, d, e) = ((I) O), (1,-1), (2,-1), (3,-2), (2,-1)) 

H-+ P1 (4(-2,3), (3,4)). 
(I, J) = ((224,)-96), (-2240,1600)) (cpu time 8m, Is): 
#2: (a, b, c, d, e) = ((I, 0), (0, 0), (8,-4), (-16,8), (12,-4)) 

F--+P2= ((-1, 1), (-4, 3)). 
#3: (a, b, c, d, e) = ((1, 0), (0, 0), (-220,140), (-2112,1304), (-5648,3492)) 

P3= ((37, -23), (-228,141)). 
#4: (a, b, c, d, e) = ((1, 0), (0, 0), (-16, 14), (-40,24), (-19, 13)) 

F--+P4= ((3,-2), (-3,2)) = P1 -P2-P3. 
#5: (a, b, c, d, e) = ((1, 0), (0, 0), (-28,)-52), (-192,)-280), (-272, -476)) 

H-+ P5= ((5,9), (-20, -25)) = P1 - 4P2 - P3. 
#6: (a, b, c, d, e) = ((I, 0), (0, 0), (-16,-34), (-104,-136), (-99,-195)) 

I-- P6= ((3,6), (-II,-10)) = -2P1 + 7P2 + 3P3. 
#7: (a, b, c, d, e) = ((1, 0), (0, 0), (-304,164), (-3248,1928), (-9924, 6060)) 

P7= ((51, -27), (-356,215)) = P1 + P2. 
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Rank = 3. 
Total cpu time: 8m, 20s. 

Example 3: K = Q(2), E [(2, -2), (-2,2), (-2,0), (1,2), (-2,0)]. 
One (I, J) pair: ((4, -12), (16,36)). 
No nontrivial globally soluble quartics. 
Rank = 0. 
Total cpu time: 31m, 16s. 

Example 4: K = Q(2), E [(0, 0), (2, 1), (0,0), (1,0), (-1,-i)]. 
Three (I, J) pairs: ((3,4), (5,8)), ((12,16), (40,64)), and ((48,64), (320,512)). 
One nontrivial globally soluble quartic. 
(I, J) = ((3,4), (5, 8)) (cpu time lm, 47s): 
No nontrivial globally soluble quartics. 
(I, J) = ((12, 16), (40, 64)) (cpu time 7m, 56s): 
#1: (a, b, c, d, e) = ((I) O), (O, O), (-2, 2), (-4, 2), (0, 2)) 

F+ pi = 
((O,-1), (1, -1)).- 

(I, J) = ((48, 64), (320, 512)) (cpu time lh, 42m, 31s): 
No nontrivial globally soluble quartics. 
Rank = 1. 
Total cpu time: lh, 52m, 14s. 

Example 5: K = Q(13), E = [(0, 2), (0,-1), (1,2), (0,1), (0,1)]. 
One (I, J) pair: ((16, -16), (-112,64)). 
One nontrivial globally soluble quartic: 
#1: (a, b, c, d,e) -((1,-2), (10,2), (-4,-8), (6,4), (-1,-1)) 

P1 (4j-3) 0)) 8-3,)-2)). 
Rank = 1. 
Total cpu time: 17h, 59m, 10s. 

Example 6: K = Q(13), E = [(0, 0), (1, 2), (0,0), (2, 3), (1, 1)]. 
Two (I, J) pairs: ((7,-1), (31,-10)) and ((112,-16), (1984,-640)). 
No nontrivial globally soluble quartics. 
(I, J) = ((7, -1), (31, -10)) (cpu time 10m, 43s): 
No nontrivial globally soluble quartics. 
(I, J) = ((112, -16), (1984, -640)) (cpu time 5h, 35m, 12s): 
No nontrivial globally soluble quartics. 
Rank = 0. 
Total cpu time: 5h, 44m, 4s. 

Example 7: K = Q(V3), E = [(2, 2), (1, 1), (0,0), (0, 2), (-2, -2)]. 
One (I, J) pair: ((52, 24), (-844, -468)). 
Three inequivalent nontrivial globally soluble quartics. 
#1: (a, b, c, d, e) = ((2,1), (0,2), (8,-6), (-26,14), (31,-17)) 

--+ P1 = ((-2, -1), (10, 5)). 
#2: (a, b, c, d, e) = ((2, 1), (2, 0), (2,0), (-8,2), (-9,6)) 

- P2 - ( (1756, -1405), 131 (169325, -77612)). 
#3: (a, b, c, d, e) ((2, 1), (1,-1), (2, -6), (14, -10), (18, -10)) 

H P3= (2(32, 19), '(-599, -349)) = -3Pi - P2. 
Rank = 2. 
Total cpu time: 10h, 56m, lls. 
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Example 8: K = Q(V3), E = [(-2,2), (1,-i), (0,0), (0,-2), (2,-2)]. 
Three (I, J) pairs: ((163,-94), (-6334,3657)), ((52,-24), (-952,576)), and 

((304, 160), (9344, 5568)). 
No nontrivial globally soluble quartics. 
(I, J) = ((163, -94), (-6334,3657)) (cpu time 2h, 12rn, 13s): 
No nontrivial globally soluble quartics. 
(I, J) = ((52, -24), (-952, 576)) (cpu time 8h, 9m, 58s): 
No inontrivial globally soluble quartics. 
(I, J) = ((304,160), (9344, 5568)) (cpu time 20h, 17m, 47s): 
No nontrivial globally soluble quartics. 
Rank -0. 
Total cpu time: 30h, 39m, 58s. 
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